Novel Therapies for Triple Negative, HER2+ and ER+ Breast Cancer

Joyce O’Shaughnessy, MD
Celebrating Women Chair in Breast Cancer Research
Baylor University Medical Center
Texas Oncology
US Oncology
Comprehensive molecular portraits of human breast tumours

The Cancer Genome Atlas Network

<table>
<thead>
<tr>
<th>Subtype</th>
<th>Basal-like</th>
</tr>
</thead>
<tbody>
<tr>
<td>ER(^+)/HER2(^-) (%)</td>
<td>10</td>
</tr>
<tr>
<td>HER2(^+) (%)</td>
<td>2</td>
</tr>
<tr>
<td>TNBCs (%)</td>
<td>80</td>
</tr>
<tr>
<td>TP53 pathway</td>
<td>TP53 mut (84%); gain of MDM2 (14%)</td>
</tr>
<tr>
<td>PIK3CA/PTEN pathway</td>
<td>PIK3CA mut (7%); PTEN mut/loss (35%); INPP4B loss (30%)</td>
</tr>
<tr>
<td>RB1 pathway</td>
<td>RB1 mut/loss (20%); cyclin E1 amp (9%); high expression of CDKN2A; low expression of RB1</td>
</tr>
<tr>
<td>mRNA expression</td>
<td>Basal signature; high proliferation</td>
</tr>
<tr>
<td>Copy number</td>
<td>Most aneuploid; high genomic instability; 1q, 10p gain; 8p, 5q loss; MYC focal gain (40%)</td>
</tr>
<tr>
<td>DNA mutations</td>
<td>TP53 (84%); PIK3CA (7%)</td>
</tr>
<tr>
<td>DNA methylation</td>
<td>Hypomethylated</td>
</tr>
<tr>
<td>Protein expression</td>
<td>High expression of DNA repair proteins, PTEN and INPP4B loss signature (pAKT)</td>
</tr>
</tbody>
</table>
Subtypes of TNBC and targeted therapy selection

No TNBC subtyping approach is yet of proven clinical utility

Basal1
Basal2
Immune Module
Mesenchymal
Mesenchymal Stem-like
Luminal Apocrine

Cell cycle, DNA damage
GFR, glycolysis, p63
B/TCR, cytokines, JAK/STAT
ECM receptors
TGF-β
Rho
Wnt/β-Cat
EMT
Stem cell markers
Luminal CK’s
AR
FOXA1
XBP1

Summary – Triple Negative Breast Cancer

- **Systemic neo/adjuvant chemotherapy**
 - Adjuvant anthracycline (TaxAC vs 6TC) improves DFS in TNBC
 - Addition of carboplatin to paclitaxel improves pCR rate with as yet unknown effects on DFS – reasonable for high risk pts
 - In patients who do not develop a pCR with preoperative chemotherapy, adjuvant treatment with capecitabine is a reasonable option

- **Promising Approaches**
 - Nab paclitaxel/carboplatin first-line metTNBC
 - PARP inhibitors gBRCA pts
 - AKT inhibitors
 - AR inhibitors
 - PD-1/PD-L1 inhibitors
ABC Trials Schema

Node+ or High Risk Node-Negative Stratification Variables
Number of + Nodes (0, 1-3, 4-9, 10+); Hormone Receptor (ER or PgR+, Both Negative)

ARM 1 (TaxAC Options)
A
TAC q 3 wk
B
AC q 3 wk
C
AC q 2 wk
D
AC q 2 wk

ARM 2 (TC)

TC q 3 wk

Arm 1 Options Per Study
- USOR 06-090 - 1A only
- NSABP B-46I/USOR 07132 - 1A only
- NSABP B-49 - investigator choice 1A-1D

Endocrine therapy for ER+ or PgR+ patients for minimum of 5 years

Presented by: Joanne L. Blum, MD, PhD.
ABC Trials: Invasive Disease Free Survival

Presented by: Joanne L. Blum, MD, PhD.

Years from Randomization

<table>
<thead>
<tr>
<th></th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alive and Inv. Disease-free (%)</td>
<td>1575</td>
<td>1014</td>
<td>847</td>
<td>566</td>
<td>317</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1599</td>
<td>1014</td>
<td>858</td>
<td>594</td>
<td>358</td>
<td>136</td>
<td></td>
</tr>
</tbody>
</table>

Alive and Inv. Disease-free (%)

- TC: 2094, 220 events, 88.2%
- TaxAC: 2062, 179 events, 90.7%

Δ = 2.5%

4 yr

Treatment	N	Events	IDFS
TC | 2094 | 220 | 88.2%|
TaxAC | 2062 | 179 | 90.7%|

HR = 1.23, 95% CI (1.01-1.50) P = 0.04
ABC Trials: IDFS by Hormone and Nodal Status
Exploratory Analysis

HR Negative

<table>
<thead>
<tr>
<th>Status</th>
<th>Patients</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>N- TaxAC</td>
<td>459</td>
<td>37</td>
</tr>
<tr>
<td>N- TC</td>
<td>488</td>
<td>52</td>
</tr>
<tr>
<td>1-3N+ TaxAC</td>
<td>153</td>
<td>21</td>
</tr>
<tr>
<td>1-3N+ TC</td>
<td>119</td>
<td>28</td>
</tr>
<tr>
<td>4+N+ TaxAC</td>
<td>42</td>
<td>11</td>
</tr>
<tr>
<td>4+N+ TC</td>
<td>40</td>
<td>16</td>
</tr>
</tbody>
</table>

HR Positive

<table>
<thead>
<tr>
<th>Status</th>
<th>Patients</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>N- TaxAC</td>
<td>358</td>
<td>29</td>
</tr>
<tr>
<td>N- TC</td>
<td>378</td>
<td>22</td>
</tr>
<tr>
<td>1-3N+ TaxAC</td>
<td>771</td>
<td>46</td>
</tr>
<tr>
<td>1-3N+ TC</td>
<td>789</td>
<td>53</td>
</tr>
<tr>
<td>4+N+ TaxAC</td>
<td>279</td>
<td>35</td>
</tr>
<tr>
<td>4+N+ TC</td>
<td>280</td>
<td>49</td>
</tr>
</tbody>
</table>
Role of Neoadjuvant Platinum in TNBC: Randomized Trials

<table>
<thead>
<tr>
<th>Study</th>
<th>No</th>
<th>Backbone Regimen</th>
<th>No Carbo</th>
<th>Carboplatin</th>
</tr>
</thead>
<tbody>
<tr>
<td>GeparSixto</td>
<td>315</td>
<td>Weekly paclitaxel + liposomal dox + bev</td>
<td>38%</td>
<td>59%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P < 0.05</td>
</tr>
<tr>
<td>C406063</td>
<td>433</td>
<td>Sequential weekly paclitaxel – AC +/- bev</td>
<td>41%</td>
<td>54%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P = 0.0029</td>
</tr>
<tr>
<td>Tamura et al</td>
<td>75</td>
<td>Sequential weekly pacl +/- Carb AUC5 - CEF</td>
<td>26%</td>
<td>62%</td>
</tr>
<tr>
<td>Alba et al</td>
<td>94</td>
<td>EC – Doc +/- Carbo AUC6</td>
<td>30%</td>
<td>30%</td>
</tr>
</tbody>
</table>

Von Minckwitz et al. Lancet Oncol 2014; Sikov et al. JCO 2014; Alba et al. BRCT 2012; Tamura et al. ASCO 2014, Abstract 1107
DFS: Effect of Carboplatin in TNBC

Logrank p = 0.0325
HR PMCb to PM = 0.56, 95% CI (0.33, 0.96), p = 0.0350

PM 36/157 events
PMCb 21/158 events

3 yrs DFS 85.8%
3 yrs DFS 76.1%
CALGB 40603 – EFS for carboplatin vs. not

HR = 0.84 (0.58-1.22), p = 0.36

Proportion Event-Free

Years from Study Entry

<table>
<thead>
<tr>
<th>No Cb</th>
<th>Cb</th>
</tr>
</thead>
<tbody>
<tr>
<td>218</td>
<td>225</td>
</tr>
<tr>
<td>185</td>
<td>202</td>
</tr>
<tr>
<td>145</td>
<td>162</td>
</tr>
<tr>
<td>94</td>
<td>101</td>
</tr>
<tr>
<td>31</td>
<td>37</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
NRG-BR003

Node-Positive or High-Risk Node-Negative Triple Negative Breast Cancer

Randomization

ACx4 → Paclitaxel qwk x 12

ACx4 → Paclitaxel qwk x 12 + Carboplatin beginning with WP

AC: 60 mg/m² /600 mg/m² (Std or DD AC); Paclitaxel: 80 mg/m² IV weekly; Carboplatin: AUC of 5 IV q3 weeks for 4 cycles
Efficacy of neoadjuvant carboplatin plus docetaxel in triple negative breast cancer: Combined analysis of two cohorts

PATIENTS AND METHODS:
- 190 patients with stage I-IIITNBC treated uniformly on two independent prospective cohorts (KU, Spain)
- Treatment regimen: Cb (AUC 6) + D (75mg/m2) given every 21 days X 6 cycles
 - all received pegfilgrastim or filgrastim

RESULTS:
- Median tumor size 35mm, 52% node pos, 16% BRCA1/2 mutation
- Stage: 33% stage III, 56% stage II, 11% stage I.
- pCR and RCB 0+1 rates were 55% and 68%, respectively
- Multivariable analysis - stage III disease (OR 0.35, p<0.001), T3-4 lesion (OR 0.39, p=0.003), associated with a lower pCR, but not age, BRCA ½ mutation, clinical nodal status; KU site associated with higher rate (OR 1.93, p=0.046)
- Toxicity - 21% 7% of patients, respectively, experienced at least one grade 3 or 4 adverse event.

Reasonable option
- Prior anthracycline or concern about anthracycline therapy
- Need for more convenient 3 weekly regimen
- Preexisting low grade neuropathy or high risk of neuropathy from weekly paclitaxel (eg, black race, diabetes)

CREATE-X: Trial Design

HER2-

NAC Surgery

Pathology Non-pCR or node + (n=900)

Control: Standard therapy + Capecitabine

Stratification factors:
ER, Age, NAC, ypN, 5FU and institution

Capecitabine Therapy

Capecitabine (X): 2,500 mg/m²/day, po, day 1-14
Repeat every 3 weeks for 8 cycles

According to the safety interim analysis of the first 50 pts treated with 6 cycles of X, the IDMC recommended extending X to 8 cycles.

Toi M et al. Proc ASCO, 2016
Disease Free Survival

HR (95%CI) 0.70 (0.53-0.93)
One-sided p=0.00524 < 0.00671

5yr DFS
74.1% Capecitabine
67.7% Control

Toi M et al. Proc ASCO, 2016
<table>
<thead>
<tr>
<th>Category (n)</th>
<th>HR (95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total (885)</td>
<td>0.70 (0.53-0.93)</td>
</tr>
<tr>
<td>Age <50 (531)</td>
<td>0.72 (0.50-1.03)</td>
</tr>
<tr>
<td>Age 50- (354)</td>
<td>0.68 (0.45-1.04)</td>
</tr>
<tr>
<td>HR+ (561)</td>
<td>0.84 (0.57-1.23)</td>
</tr>
<tr>
<td>HR- (296)</td>
<td>0.58 (0.39-0.87)</td>
</tr>
<tr>
<td>ypNO (345)</td>
<td>0.88 (0.48-1.62)</td>
</tr>
<tr>
<td>ypN1 (339)</td>
<td>0.54 (0.36-0.83)</td>
</tr>
<tr>
<td>ypN2or3 (199)</td>
<td>0.82 (0.52-1.29)</td>
</tr>
<tr>
<td>Path grade 0-1b (482)</td>
<td>0.63 (0.45-0.88)</td>
</tr>
<tr>
<td>by NAC 2,3 (385)</td>
<td>0.84 (0.52-1.34)</td>
</tr>
<tr>
<td>Taxane + (849)</td>
<td>0.70 (0.53-0.93)</td>
</tr>
<tr>
<td>- (36)</td>
<td>0.87 (0.12-6.24)</td>
</tr>
<tr>
<td>5FU containing + (529)</td>
<td>0.74 (0.52-1.04)</td>
</tr>
<tr>
<td>- (356)</td>
<td>0.65 (0.42-1.02)</td>
</tr>
<tr>
<td>Japanese (599)</td>
<td>0.74 (0.53-1.02)</td>
</tr>
<tr>
<td>Korean (286)</td>
<td>0.63 (0.37-1.05)</td>
</tr>
</tbody>
</table>

Toi M et al. Proc ASCO, 2016
Overall Survival

HR (95%CI) 0.60 (0.40-0.92)

One-sided p<0.01

5yr OS
89.2% Capecitabine
83.9% Control

Toi M et al. Proc ASCO, 2016
Pt is On Study

Stratifying Biomarkers

Randomized

HER2 (+)

Weekly paclitaxel &
Trastuzumab
±
New Agent A, B, or C

AC → Surgery

Randomized

HER2 (−)

Weekly paclitaxel
±
New Agent C, D, or E

AC → Surgery

Stratifying Biomarkers (Established/Approved/IDE)

ER, PR
HER2 (IHC, FISH, RPPA, 44K-microarray)
MammaPrint 44K microarray
Preoperative MK-2206 AKT inhibitor

- 93 pts MK-2206 + weekly paclitaxel (then AC)
- 59 pts weekly paclitaxel alone (then AC)

- pCR TNBC pts 40% with MK-2206 vs 22% control

- 76% probability success MK-2206 phase 3 TNBC – GRADUATED

- RPPA biomarker analyses ongoing

Tripathy D. ASCO 2015
Preoperative Neratinib

<table>
<thead>
<tr>
<th>Signature</th>
<th>Estimated pCR Rate (95% probability interval)</th>
<th>Probability Neratinib is Superior to Control</th>
<th>Predictive Probability of Success in Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Neratinib</td>
<td>Control</td>
<td></td>
</tr>
<tr>
<td>HR-/HER2-</td>
<td>36% (29-43%)</td>
<td>30% (23-38%)</td>
<td>72%</td>
</tr>
<tr>
<td>HR-/HER2+</td>
<td>55% (46-64%)</td>
<td>32% (22-43%)</td>
<td>94%</td>
</tr>
<tr>
<td>HR+/HER2-</td>
<td>14% (8-19%)</td>
<td>16% (10-21%)</td>
<td>39%</td>
</tr>
<tr>
<td>HR+/HER2+</td>
<td>31% (24-37%)</td>
<td>17% (10-24%)</td>
<td>91%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ROC Established RIU Cutoff Value</th>
<th>pCR Rate Control Group</th>
<th>pCR Rate Neratinib Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>All TN samples in Neratinib Arms</td>
<td></td>
<td>30% (8/27)</td>
<td>37.5% (12/32)</td>
</tr>
<tr>
<td>TN samples in this study</td>
<td></td>
<td>31% (6/19)</td>
<td>40% (12/30)</td>
</tr>
<tr>
<td>EGFR Y1173 biomarker positive</td>
<td>4400</td>
<td>45.4% (4/11)</td>
<td>63% (10/16)</td>
</tr>
<tr>
<td>ERBB2 Y1248 biomarker positive</td>
<td>3100</td>
<td>36% (5/14)</td>
<td>62.5% (10/16)</td>
</tr>
</tbody>
</table>

Wulfskühle JD et al ASCO 2015
Veliparib/Carboplatin Graduates in the Triple Negative Signature

<table>
<thead>
<tr>
<th>SIGNATURE</th>
<th>Estimated pCR Rate</th>
<th>Probability Veliparib + Carbo is Superior to Control</th>
<th>Predictive Probability of Success in Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimated pCR Rate (95% probability interval)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Veliparib/Carbo</td>
<td>Concurrent Control</td>
<td></td>
</tr>
<tr>
<td>All HER2-</td>
<td>33% (22-43%)</td>
<td>22% (10-35%)</td>
<td>92%</td>
</tr>
<tr>
<td>HR+/HER2-</td>
<td>14% (4-27%)</td>
<td>19% (6-35%)</td>
<td>28%</td>
</tr>
<tr>
<td>HR-/HER2-</td>
<td>52% (35-69%)</td>
<td>26% (11-40%)</td>
<td>99%</td>
</tr>
</tbody>
</table>

I-SPY 2 Rugo et al, NEJM 2016
Novels Therapies for Metastatic Disease
Trial design

TNT Trial

ER-, PgR-/unknown & HER2- or known BRCA1/2
Metastatic or recurrent locally advanced

Exclusions include:
- Adjuvant taxane in ≤12 months
- Previous platinum treatment
- Non-anthracyclines for MBC

A Priori subgroup analyses:
- BRCA1/2 mutation
- Basal-like subgroups (PAM50 and IHC)
- Biomarkers of HRD

Carboplatin (C)
AUC 6 q3w, 6 cycles
On progression, crossover if appropriate

Docetaxel (D)
100mg/m² q3w, 6 cycles
On progression, crossover if appropriate

Docetaxel (D)
100mg/m² q3w, 6 cycles

Carboplatin (C)
AUC 6 q3w, 6 cycles

Tutt et al. SABCS 2014; S3-01
Objective response

Randomised treatment - all patients (N=376)

- Carboplatin: 59/188 (31.4%)
- Docetaxel: 67/188 (35.6%)

Absolute difference (C-D): -4.2% (95% CI -13.7 to 5.3)
Exact p = 0.44

Crossover treatment - all patients (N=182)

- Carboplatin: 21/92* (22.8%)
- Docetaxel (Cross over from Carboplatin): 23/90* (25.6%)

Absolute difference (D-C): -2.8% (95% CI -15.2 to 9.6)
Exact p = 0.73

*Denominator excludes those with no first progression and those not starting crossover treatment.

This presentation is the intellectual property of the author/presenter. Contact them at int-icrcasu@icr.ac.uk for permission to reprint and/or distribute.
Objective response – BRCA 1/2 status

Germline BRCA 1/2 Mutation (n=43)
- Carboplatin: 17/25 (68.0%)
- Docetaxel: 6/18 (33.3%)

No Germline BRCA 1/2 Mutation (n=273)
- Carboplatin: 36/128 (28.1%)
- Docetaxel: 53/145 (36.6%)

Absolute difference (C-D)
- 34.7% (95% CI 6.3 to 63.1) Exact p = 0.03
- -8.5% (95% CI -19.6 to 2.6) Exact p = 0.16

Interaction: randomised treatment & BRCA 1/2 status: p = 0.01
Metastatic TNBC Exceptional Responders to First-Line Platinum

| Table 3. Clinical, Genetic, and Tumor Molecular Features of Long-Term Responders |
|---|---|---|---|---|---|---|---|---|---|---|
| Patient | BRCA | Subtype | PIK3CA | p53 | p63/p73 | OS (months)* | Adjuvant Therapy | Therapy | Best Response | Site of Disease | Therapy After Platinum Treatment |
| 7 | WT | B | Missense mutation | Missense mutation | < 2 | 69 | None | Cisplatin | CR | Breast, lymph nodes | Surgery, chemotherapy, and radiation |
| 28 | WT | N | WT | WT | > 2 | 58 | Anthracycline-taxane | Cisplatin | PR | Lymph nodes | None |
| 45 | WT | X | WT | WT | X | 48 | None | Cisplatin | CR | Lung, breast, lymph nodes | Surgery, chemotherapy, and radiation |
| 53 | WT | B | WT | WT | Missense mutation | < 2 | 40 | Anthracycline-taxane | Cisplatin | PR | Lung | None |
| 69 | X | X | X | X | X | 41 | Anthracycline-taxane | Carboplatin | PR | Lung, lymph nodes | Radiation |
| 77 | WT | N | WT | Missense mutation | X | 34 | Anthracycline-taxane | Carboplatin | CR | Lymph nodes | Stereotactic radiosurgery to brain metastasis, chemotherapy |

4/34 highly durable ORR 11.7% First-line cisplatin (overall ORR 35%)
2/35 highly durable ORR 5.7% First-line carboplatin (overall ORR 23%)

TnAcity: Randomized Phase II Trial of Chemotherapy Doublets for First Line metTNBC

Figure 1. Study Design

STUDY DESIGN

First-line mTNBC
Female, age ≥ 18 y
ECOG PS 0 - 1
Measurable by RECIST
No grade ≥ 2 peripheral neuropathy

Stratification factors
- Phase II: DFI (≤ 1 year vs > 1 year)
- Phase III: DFI (≤ 1 year vs > 1 year); prior adjuvant/neoadjuvant taxane treatment (yes/no)

Yardley D et al. SABCS 2016, abst 874
TnAcity: PFS and OS First Line metTNBC

Figure 2. Progression-Free Survival

<table>
<thead>
<tr>
<th></th>
<th>nab-P/C</th>
<th>nab-P/G</th>
<th>G/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFS, median, months</td>
<td>7.4</td>
<td>5.4</td>
<td>6.0</td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td>—</td>
<td>0.60 (0.39 - 0.93)*</td>
<td>0.61 (0.39 - 0.94)*</td>
</tr>
<tr>
<td>P value</td>
<td>—</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>12-month PFS rate, %</td>
<td>27</td>
<td>13</td>
<td>11</td>
</tr>
</tbody>
</table>

Figure 3. Overall Survival

<table>
<thead>
<tr>
<th></th>
<th>nab-P/C</th>
<th>nab-P/G</th>
<th>G/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS, median, months</td>
<td>16.4</td>
<td>12.1</td>
<td>12.6</td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td>—</td>
<td>0.66 (0.42 - 1.04)*</td>
<td>0.74 (0.48 - 1.16)*</td>
</tr>
<tr>
<td>P value</td>
<td>—</td>
<td>0.07</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Yardley D et al. SABCS 2016, abst 874
PARP inhibitors in gBRCA mutated cancer

Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial

Andrew Tutt, Mark Robson, Judy E Garber, Susan M Domchek, M William Audeh, Jeffrey N Weitzel, Michael Friedlander, Banu Arun, Niklas Loman, Rita K Schmutzler, Andrew Wardley, Gillian Mitchell, Helena Earl, Mark Wickens, James Carmichael

This presentation is the intellectual property of the author/presenter. Contact them at andrew.tutt@icr.ac.uk for permission to reprint and/or distribute
Efficacy and tolerability of veliparib + carboplatin + paclitaxel in patients with BRCA1 or BRCA2 mutations in mBC

- Breast cancers with BRCA1/2 mutations -- defects in homologous recombination DNA repair mechanisms, are sensitive to poly(ADP-ribose) polymerase (PARP) inhibitors
- The PARP inhibitor veliparib effective in early trials in combination with carboplatin and paclitaxel
- BROCADE is a randomised, placebo-controlled Phase II trial of veliparib, carboplatin and paclitaxel in locally recurrent or mBC with a BRCA1/2 mutation

LR or mBC with BRCA1/2 mutation (N = 290)

- Veliparib + carboplatin + paclitaxel (n=97)
- Placebo + carboplatin + paclitaxel (n=99)
- Veliparib + temozolomide (n=94)

HS Han, et al. Oral presentation, Abstract S2-05 SABCS 2016
Veliparib + carboplatin + paclitaxel: PFS

Primary analysis

<table>
<thead>
<tr>
<th>Placebo + C/P</th>
<th>Veliparib + C/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median PFS, months</td>
<td>12.3</td>
</tr>
<tr>
<td>(95% CI)</td>
<td>(9.3–14.5)</td>
</tr>
<tr>
<td>HR</td>
<td>0.789</td>
</tr>
<tr>
<td>p value</td>
<td>(0.536–1.162)</td>
</tr>
</tbody>
</table>

Number at risk

<table>
<thead>
<tr>
<th>Placebo + C/P</th>
<th>Veliparib + C/CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 98</td>
<td>n = 95</td>
</tr>
<tr>
<td>Number at risk</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>95</td>
</tr>
</tbody>
</table>
Stage 1 Phase II Trial of Enzalutamide in AR+ metTNBC

71 yo TNBC 5-year DFI
2 prior regimens MBC
CR 32+ weeks on Rx

73 yo TNBC 6-year DFI
First Line MBC
48+ weeks on RX

Figure 4. Clinical Benefit Rate at 16 and 24 Weeks in Stage 1 Evaluate Patients

A Prescreened population: 79% of TNBC tissue expressed some AR; 55% of TNBC tissue expressed AR ≥ 10%
Summary – Triple Negative Breast Cancer

- **Systemic neo/adjuvant chemotherapy**
 - Adjuvant anthracycline (TaxAC vs 6TC) improves DFS in TNBC
 - Addition of carboplatin to paclitaxel improves pCR rate with as yet unknown effects on DFS – reasonable for high risk pts
 - In patients who do not develop a pCR with preoperative chemotherapy, adjuvant treatment with capecitabine is a reasonable option

- **Promising Approaches**
 - Nab paclitaxel/carboplatin first-line metTNBC and ?neoadjuvant
 - PARP inhibitors gBRCA pts
 - AKT, AR and PD-1/PD-L1 inhibitors
 - ADCs against Trop2 (sacituzumab) and GPNMB (glembatumumab)
Optimizing Therapy for HER2+ Breast Cancer
HER2+ Breast Cancer Following Adjuvant Trastuzumab: Risk of Locoregional or Distant Recurrence

- Approximately 20% of patients diagnosed with breast cancer are HER2+\(^a\) (~35,000 patients annually in the US\(^b\))

- Trastuzumab has dramatically improved the outcome of HER2+ breast cancer\(^c\)

- Despite these advances,
 - 16-20+% pts recur with invasive breast cancer within 8 to 10 years after initial diagnosis\(^d,e\)

- No proven curative therapy for locally recurrent or metastatic HER2+ breast cancer following adjuvant trastuzumab

Focal HER2 Amplification
CEP17

HER2
Current HER2+ Targeted Treatments

Trastuzumab
Ado-trastuzumab emtansine
Pertuzumab
Lapatinib

HER2
HER1/3/4
PI3K
AKT
mTOR

Angiogenesis
Growth and proliferation
Metabolism

ER
CoA
ERE

Gene transcription

B-31/N9831 Cumulative Incidence of Distant Recurrence as a First Event

ER and/or PR Positive

ER and PR Negative

San Antonio Breast Cancer Symposium, December 4-8, 2012
Standard Trastuzumab-Based Adjuvant Therapy in HER2+ Breast Cancer (BCIRG 006)

Disease Free Survival

One-quarter of patients remain at risk for DFS event after adjuvant trastuzumab therapy

Pertuzumab and trastuzumab have complementary mechanisms of action.

Trastuzumab:
- Inhibits ligand-independent HER2 signaling
- Activates ADCC
- Prevents HER2 ECD shedding

Pertuzumab:
- Inhibits ligand-dependent HER2 dimerization and signaling
- Suppresses multiple HER signalling pathways
- Activates ADCC

Patients with HER2-positive MBC centrally confirmed (N=808)

Randomization was stratified by geographic region and prior treatment status (neo/adjuvant chemotherapy received or not)

Study dosing q3w:
- Pertuzumab/Placebo: 840 mg loading dose, 420 mg maintenance
- Trastuzumab: 8 mg/kg loading dose, 6 mg/kg maintenance
- Docetaxel: 75 mg/m2, escalating to 100 mg/m2 if tolerated

HER2, human epidermal growth factor receptor 2; MBC, metastatic breast cancer; PD, progressive disease
Significant improvement in OS in favour of Pertuzumab arm
Confirmatory Overall survival analysis
(Median follow-up: 30 month)

HR=0.66
95% CI 0.52–0.84
p=0.0008

* Stopping boundary for concluding statistical significance at this second interim analysis was p≤0.0138
NeoSphere: Adjuvant Component Study Design

Patients with operable or locally advanced/inflammatory HER2-positive BC

Chemo-naive & primary tumors >2 cm (N=417)

Study dosing: q3w x 4

TD (n=107)
trastuzumab (8® 6 mg/kg)
docetaxel (75® 100 mg/m²)

PTD (n=107)
pertuzumab (840® 420 mg)
trastuzumab (8® 6 mg/kg)
docetaxel (75® 100 mg/m²)

PT (n=107)
pertuzumab (840® 420 mg)
trastuzumab (8® 6 mg/kg)

PD (n=96)
pertuzumab (840® 420 mg)
docetaxel (75® 100 mg/m²)

FEC q3w x 3
trustuzumab q3w cycles 5–17

docetaxel q3w x 4
FEC q3w x 3
trustuzumab q3w cycles 5–17

FEC q3w x 3
trustuzumab q3w cycles 5–21

FEC, 5-fluorouracil, epirubicin, and cyclophosphamide
NEOSPHERE: Baseline Characteristics

High-risk population, balanced across arms

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age, years</td>
<td>50</td>
<td>50</td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td>Hormone receptor negative, %</td>
<td>53.3</td>
<td>53.3</td>
<td>51.9</td>
<td>52.1</td>
</tr>
<tr>
<td>Median tumor size, (cm)</td>
<td>5.0</td>
<td>5.5</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Node-positive, %</td>
<td>70.1</td>
<td>70.1</td>
<td>70.8</td>
<td>70.8</td>
</tr>
<tr>
<td>Locally advanced/inflammatory, %</td>
<td>40.1</td>
<td>39.2</td>
<td>39.2</td>
<td>37.5</td>
</tr>
</tbody>
</table>

NEOSPHERE

Hormone receptor status – tpCR rates higher with P+H+T
Aphinity (IBCSG 39-11 / BIG 4-11)
Rationale for Extended Adjuvant Neratinib

Neratinib is active against metastatic HER2+ BC previously treated with trastuzumaba

aBurstein H et al. J Clin Oncol 28:1301-7, 2010
ExteNET: final study design

- HER2+ breast cancer (local)
- Prior adjuvant trastuzumab & chemotherapy
- Completed trastuzumab ≤1 year prior to study entry
- Lymph node positive or non-pCR after neoadjuvant therapy
- ER/PR status known

1:1 randomization

Part A
1-year follow-up for iDFS
Neratinib x 1 year
240 mg/day

Part B
5-year follow-up for iDFS
Placebo x 1 year

Part C
Overall survival

Primary analysis: invasive DFS (iDFS) in ITT population (n=2840)
- iDFS at 2 years: HR=0.67 (0.50–0.91); p=0.009
 - Hormone receptor-positive (n=1631; 57.4%); HR=0.51; p=0.001
 - Centrally-confirmed HER2-positive 60% (n=1463; 51%); HR=0.51; p=0.002

This presentation is the intellectual property of Arlene Chan
Contact arlenechan@mccom for permission to reprint and/or distribute

3-year iDFS analysis: Hormone receptor status

Hormone receptor-positive

Two-sided *P-value = 0.003
HR (95% CI) = 0.57 (0.39–0.82)

Disease-free survival (%)

Months after randomization

No. at risk
Neratinib 816 746 710 682 651 581 454 445 418 353
Placebo 815 777 745 709 637 594 494 472 445 367

Hormone receptor-negative

Two-sided *P-value = 0.938
HR (95% CI) = 0.98 (0.67–1.45)

Disease-free survival (%)

Months after randomization

No. at risk
Neratinib 604 556 537 514 426 329 316 292 247
Placebo 605 573 542 514 458 362 350 328 274

* p value descriptive

This presentation is the intellectual property of Ariene Chan
Contact arienechan@mco.com for permission to reprint and/or distribute
3-year iDFS analysis:
Hormone receptor-positive & centrally confirmed HER2+

Two-sided *P-value <0.001
HR [95% CI] = 0.43 (0.26–0.70)

No. at risk
Neratinib 455 426 410 398 342 258 252 237 200
Placebo 448 426 406 385 336 275 262 245 205

* p value descriptive
Trastuzumab Emtansine (T-DM1): Mechanism of Action

Trastuzumab-specific MOA
- Antibody-dependent cellular cytotoxicity (ADCC)
- Inhibition of HER2 signaling
- Inhibition of HER2 shedding

Antibody-dependent cellular cytotoxicity (ADCC)

Inhibition of HER2 signaling

Inhibition of HER2 shedding

Overall Survival: T-DM1 vs capecitabine/lapatinib

<table>
<thead>
<tr>
<th></th>
<th>Median (months)</th>
<th>No. of events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cap + Lap</td>
<td>25.1</td>
<td>182</td>
</tr>
<tr>
<td>T-DM1</td>
<td>30.9</td>
<td>149</td>
</tr>
</tbody>
</table>

Stratified HR=0.682 (95% CI, 0.55, 0.85); \(P=0.0006 \)

Efficacy stopping boundary \(P=0.0037 \) or HR=0.727

Data cut-off July 31, 2012; Unstratified HR=0.70 (\(P=0.0012 \)).
Katherine Study – NSABP/German Breast Group

- HER2+, T1c-T4 / N0-3 / M0
- Neoadjuvant therapy
 - 6 cycles/16 weeks
 - Trastuzumab x 9 weeks
- Residual Invasive disease

- Trastuzumab
 - 6 mg/kg q 3 weeks x 14
- T-DM1
 - 3.6 mg/kg q 3 weeks x 14

N = 1484

Enrollment: completed

Primary Endpoint: Invasive-Free Survival
Secondary Endpoints: DFS, OS, DDFS, Safety, QOL
A ≥30% reduction in the SLDs of target CNS lesions was observed in 43% of patients.

CBR responder
- Yes (n=54)
- No (n=72)

CBR, the proportion of patients whose best response was CR, PR or SD ≥6 months.
25 Patients with HER2 Somatic Mutations

- Each blue circle represents a patient.
- From 8 publications with a total of 1,499 patients.
- 20% of patients have mutations at amino acids 309 or 310.
- 68% of patients have mutations at amino acids 755-781.
27% new HER2 Alterations met ILC

ERBB2-mutant breast cancer (Neratinib monotherapy): Tumor assessments

Breast Cancer Cohort

RECIST

PET Response Criteria

* Denotes patient that progressed with amplified ERBB2
Summary: HER2+ Breast Cancer

- Alternate chromosome 17 probes can resolve equivocal FISH cases
- Preoperative TCHP for T2+ or N1+ disease – APHINITY results soon
- Neratinib extended therapy improves PFS in ER+ HER2+ disease
- Taxane + trastuzumab + pertuzumab standard first line MBC Rx
- T-DM1 second line Rx (no data post-THP)
- Capecitabine + lapatinib or trastutumab + lapatinib --- continue HER2-targeted therapy throughout metastatic course
- HER2 mutations/amplicons detected in MBC – HER2-directed Rx may be of benefit
Clinical Markers Predictors of Resistance to Endocrine Therapy

- Disease free interval from adjuvant therapy
- Duration of response
- Prior treatment
- HER2 amplification
- Lower ER expression
Need for improved hormone therapy with minimal toxicity

FACT: TTP

<table>
<thead>
<tr>
<th>Time (months)</th>
<th>Anastrozole</th>
<th>Anastrozole + fulvestrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>256</td>
<td>258</td>
</tr>
<tr>
<td>1</td>
<td>148</td>
<td>149</td>
</tr>
<tr>
<td>3</td>
<td>108</td>
<td>107</td>
</tr>
<tr>
<td>6</td>
<td>57</td>
<td>55</td>
</tr>
<tr>
<td>9</td>
<td>31</td>
<td>40</td>
</tr>
<tr>
<td>12</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>18</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>24</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>36</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>48</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

SWOG 0226: PFS

- Median Progression-free Survival
 - Combination, 15.0 mo (95% CI, 13.2–18.4)
 - Anastrozole, 13.5 mo (95% CI, 12.1–15.1)

- Hazard ratio, 0.80 (95% CI, 0.68–0.94)

- P = 0.007 by stratified log-rank test

Comparison of First Line AI ± Fulvestrant Trials

<table>
<thead>
<tr>
<th></th>
<th>FACT¹</th>
<th>SWOG 0226²</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Patients</td>
<td>514</td>
<td>707</td>
</tr>
<tr>
<td>De Novo Metastatic Disease</td>
<td>13%</td>
<td>39%</td>
</tr>
<tr>
<td>Prior Adjuvant Chemotherapy</td>
<td>45%</td>
<td>33%</td>
</tr>
<tr>
<td>Prior Adjuvant Endocrine Therapy (TAM)</td>
<td>68%</td>
<td>40%</td>
</tr>
<tr>
<td>Prior Adjuvant AI</td>
<td>1.5%</td>
<td>excluded</td>
</tr>
<tr>
<td>Median TTP/PFS Range (mo)</td>
<td>10–11</td>
<td>13–15</td>
</tr>
<tr>
<td>PFS Benefit</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Median OS Benefit, (mo)</td>
<td>No, 37.8 vs. 38.2 mos</td>
<td>Yes, 41.3 vs 47.7 mos</td>
</tr>
</tbody>
</table>

Fulvestrant 500 mg IM on Day 0 followed by 250 mg IM Day 14 and 28 then 250 mg every 28 days

FALCON: (Fulvestrant and Anastrozole Compared in hormonal therapy Naïve advanced breast cancer)

- Postmenopausal women
- Locally advanced or metastatic breast cancer
- ER+ and / or PgR+
- HER2-
- Endocrine therapy-naïve

Randomised, double-blind, parallel-group, international, multicentre study

Follow-up for disease progression and survival

Randomisation of 450 patients was planned to achieve 306 progression events; if the true PFS HR was 0.69 this would provide 90% power for statistical significance at the 5% two-sided level (log-rank test)

Stratification factors: prior chemotherapy for advanced disease (yes / no); measurable vs. non-measurable disease (at baseline); locally advanced vs. metastatic disease

Subgroup analysis of PFS for pre-defined baseline covariates

Primary endpoint: PFS\(^a\)

Secondary endpoints

- OS\(^b\)
- ORR
- CBR
- DoR, EDoR
- DoCB, EDoCB

- HRQoL (FACT-B total and TOI)
- Safety

Fulvestrant 500 mg
(500 mg IM on Days 0, 14 and 28, then every 28 days)
+ placebo to anastrozole

Anastrozole 1 mg
(daily PO)
+ placebo to fulvestrant

Primary endpoint:
- PFS\(^a\)

Secondary endpoints

- OS\(^b\)
- ORR
- CBR
- DoR, EDoR
- DoCB, EDoCB

- HRQoL (FACT-B total and TOI)
- Safety

\(^a\)Assessed via RECIST 1.1, surgery / radiotherapy for disease worsening, or death; \(^b\)Interim analysis at the time of PFS analysis

EDoCB, expected duration of clinical benefit; EDoR, expected duration of response; FACT-B, Functional Assessment of Cancer Therapy – Breast; TOI, Trial Outcome Index
FALCON: PRIMARY ENDPOINT, PFS

HR 0.797 (95% CI 0.637, 0.999); p=0.0486

Median PFS
Fulvestrant: 16.6 months
Anastrozole: 13.8 months

Proportion of patients alive and progression free

Number of patients at risk:

<table>
<thead>
<tr>
<th>Time (months)</th>
<th>Fulvestrant</th>
<th>Anastrozole</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>230</td>
<td>232</td>
</tr>
<tr>
<td>3</td>
<td>187</td>
<td>194</td>
</tr>
<tr>
<td>6</td>
<td>171</td>
<td>162</td>
</tr>
<tr>
<td>9</td>
<td>150</td>
<td>139</td>
</tr>
<tr>
<td>12</td>
<td>124</td>
<td>120</td>
</tr>
<tr>
<td>15</td>
<td>110</td>
<td>102</td>
</tr>
<tr>
<td>18</td>
<td>96</td>
<td>84</td>
</tr>
<tr>
<td>21</td>
<td>81</td>
<td>60</td>
</tr>
<tr>
<td>24</td>
<td>63</td>
<td>45</td>
</tr>
<tr>
<td>27</td>
<td>44</td>
<td>31</td>
</tr>
<tr>
<td>30</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>33</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>36</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>39</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

A circle represents a censored observation
FALCON: PFS IN PATIENTS WITH OR WITHOUT VISCERAL DISEASE

Without visceral disease

- Fulvestrant (n=95)
- Anastrozole (n=113)

HR 0.59 (95% CI 0.42, 0.84)
Median PFS
- Fulvestrant: 22.3 months
- Anastrozole: 13.8 months

With visceral disease

- Fulvestrant (n=135)
- Anastrozole (n=119)

HR 0.99 (95% CI 0.74, 1.33)
Median PFS
- Fulvestrant: 13.8 months
- Anastrozole: 15.9 months

Post hoc interaction test p<0.01
A circle represents a censored observation
N = 724
- Postmenopausal women
- ER+, HER2-unresectable locally advanced or metastatic BC
- Recurrence or progression after letrozole or anastrozole

Endpoints
- **Primary**: PFS (local assessment)
- **Secondary**: OS, ORR, CBR, QOL, safety, PK
- **Exploratory**: Biomarkers

Stratification:
- Sensitivity to prior hormone therapy
- Presence of visceral metastases

Abbreviations: BC, breast cancer; CBR, clinical benefit rate; ER+, estrogen receptor-positive; EVE, everolimus; EXE, exemestane; HER2−, human epidermal growth factor receptor-2-negative; ORR, overall response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PK, pharmacokinetics; QOL, quality of life.

BOLERO-2 (18-mo): Final PFS Analysis Based on Local Assessment—Met Primary Endpoint (4.6-mo Prolongation of PFS)

HR = 0.45 (95% CI, 0.38-0.54)
Log-rank $P < .0001$

Kaplan-Meier medians
EVE+EXE: 7.8 months
PBO+EXE: 3.2 months

Abbreviations: CI, confidence interval; EVE, everolimus; EXE, exemestane; HR, hazard ratio; PBO, placebo; PFS, progression-free survival.

PrECOG 0102

- Evaluated everolimus and fulvestrant vs fulvestrant + placebo (N=131)
- Advanced ER+, HER2-, post menopausal
- Previously treated with AI, or relapsing on AI
- PFS: 10.4 mos vs 5.1 mos (p=0.02)
- Expected toxicities
Reversible Histone Acetylation Regulates Gene Expression

Histone acetylation

Pol2

Activated Chromatin (hyper-acetylated histones)

HAT

Transcriptional Factors

Core histones

Acetyltransferases (HAT)

Histone acetylation

Repressed Chromatin (hypo-acetylated histones)

HDACs

Histone deacetylation

HDAC Inhibitor

mRNA

Cofactors

Repressed Chromatin

Yoo CB and Jones PA. Nat Rev Drug Discov. 2006;5:37
Entinostat and Exemestane

- Post-menopausal ER+ advanced breast cancer
- Progressed on/or relapsed while taking a NSAI

1:1

exemestane + entinostat

N = 130

NSAI setting
Bone only Region

Yardley et al 2013
Entinostat and Exemestane

PFS: 2.3 mos to 4.3 mos
HR 0.73 95% CI 0.5-1.07

mOS: 19.8 mos to 28.1 mos
HR 0.59 95% CI 0.36-0.97

Yardley et al 2013
Entinostat and Exemestane: Toxicity

Table 2. Most Common Adverse Events In the Safety Population

<table>
<thead>
<tr>
<th>MedDRA Preferred Term</th>
<th>Exemestane Plus Entinostat (n = 63)</th>
<th>Exemestane Plus Placebo (n = 66)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Any No. of Patients %</td>
<td>Grade 3 No. of Patients %</td>
</tr>
<tr>
<td>Fatigue</td>
<td>30 48</td>
<td>7 11</td>
</tr>
<tr>
<td>Nausea</td>
<td>25 40</td>
<td>3 5</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>19 30</td>
<td>8 13</td>
</tr>
<tr>
<td>Peripheral edema</td>
<td>13 21</td>
<td>0</td>
</tr>
<tr>
<td>Vomiting</td>
<td>13 21</td>
<td>3 5</td>
</tr>
<tr>
<td>Anemia</td>
<td>12 19</td>
<td>1 2</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>12 19</td>
<td>2 3</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>12 19</td>
<td>1 2</td>
</tr>
<tr>
<td>Weight decreased</td>
<td>12 19</td>
<td>0</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>11 17</td>
<td>0</td>
</tr>
<tr>
<td>Back pain</td>
<td>10 16</td>
<td>0</td>
</tr>
<tr>
<td>Pain</td>
<td>10 16</td>
<td>1 2</td>
</tr>
<tr>
<td>Pain in extremity</td>
<td>10 16</td>
<td>0</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>7 11</td>
<td>1 2</td>
</tr>
<tr>
<td>Constipation</td>
<td>6 10</td>
<td>0</td>
</tr>
</tbody>
</table>

Abbreviation: MedDRA, Medical Dictionary for Regulatory Activities.

Yardley et al 2013
Entinostat and Exemestane: Phase III

Stratify:
- Setting in which patient developed resistance to prior non steroidal AI treatment (adjuvant vs. metastatic)
- Geographic region (USA vs. other)
- Visceral disease (yes vs. no)

Randomize

Arm A
- Exemestane 25 mg po, days 1-28
- Entinostat 5 mg po, days 1, 8, 15, and 22
- Treatment continued until progressive disease or unacceptable toxicity

Arm B
- Exemestane 25 mg po, days 1-28
- Placebo 5 mg po, days 1, 8, 15, and 22
- Treatment continued until progressive disease or unacceptable toxicity
Palbociclib: CDK 4/6 Inhibitor – Breast Panel

Subtype

- Luminal
- HER2 amplified
- Non-luminal/post EMT
- Non-luminal
- Immortalized

Palbociclib and Letrozole in Advanced Breast Cancer

Richard S. Finn, M.D., Miguel Martin, M.D., Hope S. Rugo, M.D., Stephen Jones, M.D., Seock-Ah Im, M.D., Ph.D., Karen Gelmon, M.D., Nadia Harbeck, M.D., Ph.D., Oleg N. Lipatov, M.D., Janice M. Walshe, M.D., Stacy Moulder, M.D., Eric Gauthier, Pharm.D., Ph.D., Dongrui R. Lu, M.Sc., Sophia Randolph, M.D., Ph.D., Véronique Diéras, M.D., and Dennis J. Slamon, M.D., Ph.D.

A Investigator Assessment

- Hazard ratio, 0.58 (95% CI, 0.46–0.72)
- Two-sided P<0.001

B Central Assessment

- Hazard ratio, 0.65 (95% CI, 0.51–0.84)
- Two-sided P=0.001

No. at Risk

- Palbociclib–Letrozole: 444, 395, 360, 328, 295, 263, 238, 154, 69, 29, 10, 2
- Placebo–Letrozole: 222, 171, 148, 131, 116, 98, 81, 54, 22, 12, 4, 2
<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Palbociclib–Letrozole</th>
<th>Placebo–Letrozole</th>
<th>Hazard Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All randomly assigned patients</td>
<td>444 (100)</td>
<td>222 (100)</td>
<td>0.58 (0.46–0.72)</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><65 yr</td>
<td>263 (59.2)</td>
<td>141 (63.3)</td>
<td>0.57 (0.43–0.74)</td>
</tr>
<tr>
<td>≥65 yr</td>
<td>181 (40.8)</td>
<td>81 (36.3)</td>
<td>0.57 (0.39–0.84)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>344 (77.5)</td>
<td>172 (77.3)</td>
<td>0.58 (0.45–0.74)</td>
</tr>
<tr>
<td>Asian</td>
<td>65 (14.6)</td>
<td>30 (13.3)</td>
<td>0.48 (0.27–0.87)</td>
</tr>
<tr>
<td>Site of metastatic disease at baseline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visceral</td>
<td>214 (48.2)</td>
<td>110 (49.5)</td>
<td>0.63 (0.47–0.85)</td>
</tr>
<tr>
<td>Nonvisceral</td>
<td>230 (51.8)</td>
<td>112 (50.5)</td>
<td>0.50 (0.36–0.70)</td>
</tr>
<tr>
<td>Prior hormonal therapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>249 (56.1)</td>
<td>126 (56.8)</td>
<td>0.53 (0.40–0.70)</td>
</tr>
<tr>
<td>No</td>
<td>195 (43.9)</td>
<td>96 (43.2)</td>
<td>0.63 (0.44–0.90)</td>
</tr>
<tr>
<td>Disease-free interval</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newly metastatic disease</td>
<td>167 (37.6)</td>
<td>81 (36.5)</td>
<td>0.67 (0.46–0.99)</td>
</tr>
<tr>
<td>≤12 mo</td>
<td>99 (22.3)</td>
<td>48 (21.6)</td>
<td>0.50 (0.33–0.76)</td>
</tr>
<tr>
<td>>12 mo</td>
<td>178 (40.1)</td>
<td>93 (41.9)</td>
<td>0.52 (0.36–0.73)</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North America</td>
<td>168 (37.8)</td>
<td>99 (44.6)</td>
<td>0.60 (0.43–0.85)</td>
</tr>
<tr>
<td>Europe</td>
<td>212 (47.7)</td>
<td>95 (42.8)</td>
<td>0.57 (0.41–0.80)</td>
</tr>
<tr>
<td>Asia Pacific</td>
<td>64 (14.4)</td>
<td>28 (12.6)</td>
<td>0.49 (0.27–0.87)</td>
</tr>
<tr>
<td>ECOG performance status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>257 (57.9)</td>
<td>102 (45.9)</td>
<td>0.65 (0.47–0.90)</td>
</tr>
<tr>
<td>1 or 2</td>
<td>187 (42.1)</td>
<td>120 (54.1)</td>
<td>0.53 (0.39–0.72)</td>
</tr>
<tr>
<td>Bone-only disease at baseline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>103 (23.2)</td>
<td>48 (21.6)</td>
<td>0.36 (0.22–0.59)</td>
</tr>
<tr>
<td>No</td>
<td>341 (76.8)</td>
<td>174 (78.4)</td>
<td>0.65 (0.51–0.84)</td>
</tr>
<tr>
<td>Measurable disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>338 (76.1)</td>
<td>171 (77.0)</td>
<td>0.66 (0.52–0.85)</td>
</tr>
<tr>
<td>No</td>
<td>106 (23.9)</td>
<td>51 (23.0)</td>
<td>0.35 (0.22–0.57)</td>
</tr>
<tr>
<td>Prior chemotherapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>213 (48.0)</td>
<td>109 (49.1)</td>
<td>0.53 (0.40–0.72)</td>
</tr>
<tr>
<td>No</td>
<td>231 (52.0)</td>
<td>113 (50.9)</td>
<td>0.61 (0.44–0.84)</td>
</tr>
<tr>
<td>Most recent therapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aromatase inhibitor</td>
<td>91 (20.5)</td>
<td>44 (19.8)</td>
<td>0.55 (0.34–0.88)</td>
</tr>
<tr>
<td>Antiestrogen</td>
<td>154 (34.7)</td>
<td>75 (33.8)</td>
<td>0.56 (0.39–0.80)</td>
</tr>
<tr>
<td>No. of disease sites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>138 (31.1)</td>
<td>66 (29.7)</td>
<td>0.51 (0.34–0.77)</td>
</tr>
<tr>
<td>≥2</td>
<td>306 (68.9)</td>
<td>156 (70.3)</td>
<td>0.61 (0.47–0.79)</td>
</tr>
<tr>
<td>Histopathological classification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ductal carcinoma</td>
<td>356 (80.2)</td>
<td>184 (82.9)</td>
<td>0.59 (0.46–0.75)</td>
</tr>
<tr>
<td>Lobular carcinoma</td>
<td>68 (15.3)</td>
<td>30 (13.3)</td>
<td>0.46 (0.26–0.78)</td>
</tr>
</tbody>
</table>

Finn RS et al NEJM 2016
Qualitative Analysis

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>n</th>
<th>HR (95% CI)</th>
<th>Favors PAL+LET</th>
<th>Favors PCB+LET</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td>66</td>
<td>0.58 (0.46–0.72)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ER+</td>
<td>504</td>
<td>0.57 (0.44–0.74)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ER-</td>
<td>62</td>
<td>0.41 (0.22–0.75)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rb+</td>
<td>512</td>
<td>0.53 (0.42–0.68)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rb-</td>
<td>51</td>
<td>0.68 (0.31–1.48)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclin D1+</td>
<td>549</td>
<td>0.56 (0.44–0.71)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclin D1-</td>
<td>15</td>
<td>1.0 (0.29–3.46)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p16+</td>
<td>466</td>
<td>0.52 (0.40–0.67)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p16-</td>
<td>84</td>
<td>0.73 (0.39–1.36)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ki-67 ≤20%</td>
<td>318</td>
<td>0.53 (0.38–0.74)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ki-67 >20%</td>
<td>235</td>
<td>0.57 (0.41–0.79)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR= hazard ratio; LET= letrozole; PAL= palbociclib; PCB= placebo; PFS= progression-free survival</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quantitative Analysis

<table>
<thead>
<tr>
<th>Percentile</th>
<th>n</th>
<th>HR (95% CI)</th>
<th>Favors PAL+LET</th>
<th>Favors PCB+LET</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td>666</td>
<td>0.58 (0.46–0.72)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ER status ≤25th</td>
<td>14</td>
<td>0.50 (0.32–0.78)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>25th to <75th</td>
<td>28</td>
<td>0.53 (0.37–0.74)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥75th</td>
<td>14</td>
<td>0.65 (0.41–1.05)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rb status ≤25th</td>
<td>15</td>
<td>0.57 (0.36–0.88)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>25th to <75th</td>
<td>24</td>
<td>0.46 (0.32–0.67)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥75th</td>
<td>16</td>
<td>0.63 (0.42–0.95)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclin D1 status ≤25th</td>
<td>14</td>
<td>0.41 (0.26–0.65)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>25th to <75th</td>
<td>1</td>
<td>0.69 (0.48–1.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥75th</td>
<td>17</td>
<td>0.52 (0.34–0.78)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p16 status ≤25th</td>
<td>14</td>
<td>0.74 (0.46–1.20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>25th to <75th</td>
<td>25</td>
<td>0.62 (0.44–0.89)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥75th</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Design of Phase III Study in Recurrent MBC (1023)-PALOMA-3

- HR+, HER2– ABC
- Pre-/peri-* or post-menopausal
- Progressed on prior endocrine therapy:
 - On or within 12 mo adjuvant
 - On therapy for ABC
- ≤1 prior chemotherapy regimen for advanced cancer

2:1 Randomization
N=521

Stratification:
- Visceral metastases
- Sensitivity to prior hormonal therapy
- Pre-/peri- vs Post-menopausal

Palbociclib
(125 mg QD; 3 wks on/1 wk off) + Fulvestrant† (500 mg IM q4w)
n=347

Placebo
(3 wks on/ 1wk off) + Fulvestrant† (500 mg IM q4w)
n=174

- Post-menopausal patients must have progressed on prior aromatase inhibitor therapy.

*All received goserelin.

†administered on Days 1 and 15 of Cycle 1.
PALOMA3: Primary Endpoint: PFS (ITT Population)

Median PFS, months (95% CI)
- **Palbociclib + Fulvestrant**: 9.2 (7.5, NE)
- **Placebo + Fulvestrant**: 3.8 (3.5, 5.5)

HR (95% CI)
- **0.422 (0.318, 0.560)**

2-sided P value
- **<0.000001**

Turner N et al NEJM 2015
NON-HEMATOLOGIC ADVERSE EVENTS
Regardless of study treatment relationship

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>Ribociclib + Letrozole n=334</th>
<th>Placebo + Letrozole n=330</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>Grade 3</td>
</tr>
<tr>
<td>Nausea</td>
<td>52</td>
<td>2.4</td>
</tr>
<tr>
<td>Infections</td>
<td>50</td>
<td>3.6</td>
</tr>
<tr>
<td>Fatigue</td>
<td>37</td>
<td>2.1</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>35</td>
<td>1.2</td>
</tr>
<tr>
<td>Alopecia</td>
<td>33</td>
<td>–</td>
</tr>
<tr>
<td>Vomiting</td>
<td>29</td>
<td>3.6</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>27</td>
<td>0.6</td>
</tr>
<tr>
<td>Constipation</td>
<td>25</td>
<td>1.2</td>
</tr>
<tr>
<td>Headache</td>
<td>22</td>
<td>0.3</td>
</tr>
<tr>
<td>Hot flush</td>
<td>21</td>
<td>0.3</td>
</tr>
<tr>
<td>Back pain</td>
<td>20</td>
<td>2.1</td>
</tr>
<tr>
<td>Cough</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>19</td>
<td>1.5</td>
</tr>
<tr>
<td>Rash</td>
<td>17</td>
<td>0.6</td>
</tr>
<tr>
<td>ALT increased</td>
<td>16</td>
<td>7.5</td>
</tr>
<tr>
<td>AST increased</td>
<td>15</td>
<td>4.8</td>
</tr>
</tbody>
</table>

- In the ribociclib arm 10 (3.0%) patients experienced Grade 2 QTcF (481–500 ms) and 1 (0.3%) patient experienced Grade 3 QTcF (>500 ms); no dose reductions were required
A Phase III Randomized Double-blind, Placebo-controlled Study of Ribociclib in Combination With Fulvestrant for the Treatment of Postmenopausal Women With HR+/HER2– Advanced Breast Cancer Who Have Received No or Only One Line of Prior Endocrine Treatment

Postmenopausal women with HR+/HER2– ABC
No more than one line of endocrine therapy for advanced disease
No prior chemotherapy for advanced disease; (neo)adjuvant treatment allowed
No visceral crisis
N≈660

Randomization (2:1)
Stratification by:
- Presence of liver and/or lung metastases
- Prior endocrine therapy

Ribociclib (600 mg QD; 3-wks-on/1-wk-off) + fulvestrant (500 mg IM q4w)*
n≈440

Placebo (3-wks-on/1-wk-off) + fulvestrant (500 mg IM q4w)*
n≈220

Enrolment status: Ongoing
Study start date: Jun 2015
Estimated study completion: Apr 2020
Estimated primary completion date: Apr 2020

NCT02422615
A Phase III Randomized, Double-blind, Placebo-controlled Study of Ribociclib or Placebo in Combination With Tamoxifen and Goserelin or a Non-steroidal Aromatase Inhibitor (NSAI) and Goserelin for the Treatment of Premenopausal Women With HR+/HER2- Advanced Breast Cancer

Premenopausal women with HR+/HER2- ABC
No prior hormonal therapy for advanced disease
N=660

Randomization (1:1)

Stratification by:
- Presence of liver and/or lung metastases
- Prior chemotherapy for advanced disease
- Endocrine combination partner (tamoxifen or NSAI)

Ribociclib (600 mg QD; 3-wks-on/1-wk-off) + goserelin (3.6 mg SC q4w) + tamoxifen (20 mg QD) or NSAI (letrozole [2.5 mg QD] or anastrozole [1 mg QD])*
n≈330

Placebo (3-wks-on/1-wk-off) + goserelin (3.6 mg SC q4w) + tamoxifen (20 mg QD) or NSAI (letrozole [2.5 mg QD] or anastrozole [1 mg QD])*
n≈330

Enrolment status: Ongoing
Study start date: Nov 2014
Estimated study completion: Feb 2018
Estimated primary completion date: Feb 2018
MONARCH 1: Phase 2 Study Design

Previously-treated HR+/HER2- MBC

Abemaciclib 200 mg orally Q12H

Treatment continued until unacceptable toxicity or PD

♦ Primary objective
 • To evaluate abemaciclib with respect to confirmed objective response rate based on investigator assessment (per RECIST v1.1)

♦ Secondary objectives
 • Duration of response, progression-free survival, overall survival, clinical benefit rate, safety

♦ Statistical design
 • A sample size of 128 patients provides 82% power, assuming a true response rate of 25%, to exclude an ORR of ≤15% on the lower bound of the 95% CI at 12 months follow-up

♦ Clinical trial ID: NCT02102490
Median number of prior systemic regimens (any setting) was 5 (range 2-11)

100% of patients received taxanes in any setting

Median number of prior systemic regimens for metastatic disease was 3 (range 1-8)

<table>
<thead>
<tr>
<th>Endocrine Therapy for Metastatic Disease</th>
<th>N=132 n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Regimens</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>48 (36.4)</td>
</tr>
<tr>
<td>2</td>
<td>25 (18.9)</td>
</tr>
<tr>
<td>3</td>
<td>24 (18.2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemotherapy for Metastatic Disease</th>
<th>N=132 n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Regimens</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>67 (50.8)</td>
</tr>
<tr>
<td>2</td>
<td>64 (48.5)</td>
</tr>
<tr>
<td>3</td>
<td>1 (0.8)</td>
</tr>
</tbody>
</table>

Taxanes 91 (68.9)
Disease Control Rate (CR + PR + SD) = 67.4%

confirmed objective response rate (ORR = CR + PR) (95% CI)
CR: 0%
PR: 19.7%
stable disease ≥ 6 months: 22.7%
clinical benefit rate (CBR = ORR + SD ≥ 6 mos): 42.4%

progressive disease (n = 34)
stable disease (n = 63)
partial response (n = 26)
not assessed (n = 9)

assessments based on independent review were comparable

Abemaciclib 200 mg (N = 132)
confirmed objective response rate (ORR = CR + PR)
(95% CI) 19.7% (13.3, 27.5)

Dickler M. et al. J Clin Oncol 34, 2016 (suppl; abstr 510)
A. Progression-free Survival

- Patients/Events: 132/100
- Median, months: 5.95
- 95% CI: 4.21, 7.50

B. Overall Survival

- Patients/Events: 132/62
- Median, months: 22.32
- 95% CI: 17.7, NR

Pts = patients, NR = not reached
<table>
<thead>
<tr>
<th>Investigator Assessed TEAEs(a >20%) (N=132)</th>
<th>Grade 1 %</th>
<th>Grade 2 %</th>
<th>Grade 3 %</th>
<th>Grade 4 %</th>
<th>All Grades %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhea</td>
<td>41.7</td>
<td>28.8</td>
<td>19.7</td>
<td>0</td>
<td>90.2</td>
</tr>
<tr>
<td>Nausea</td>
<td>39.4</td>
<td>21.2</td>
<td>4.5</td>
<td>0</td>
<td>65.2</td>
</tr>
<tr>
<td>Fatigue</td>
<td>20.5</td>
<td>30.3</td>
<td>13.6</td>
<td>0</td>
<td>64.4</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>28.0</td>
<td>14.4</td>
<td>3.0</td>
<td>0</td>
<td>45.5</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>22.0</td>
<td>14.4</td>
<td>2.3</td>
<td>0</td>
<td>38.6</td>
</tr>
<tr>
<td>Vomiting</td>
<td>23.5</td>
<td>10.6</td>
<td>1.5</td>
<td>0</td>
<td>35.6</td>
</tr>
<tr>
<td>Headache</td>
<td>13.6</td>
<td>6.8</td>
<td>0</td>
<td>0</td>
<td>20.5</td>
</tr>
<tr>
<td>Pain</td>
<td>12.1</td>
<td>6.8</td>
<td>1.5</td>
<td>0</td>
<td>20.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab abnormalities(b) TEAEs(a >40%)</th>
<th>Grade 1 %</th>
<th>Grade 2 %</th>
<th>Grade 3 %</th>
<th>Grade 4 %</th>
<th>All Grades %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creatinine increased(c) (CTCAE v 4.03: over baseline)</td>
<td>46.9</td>
<td>50.8</td>
<td>0.8</td>
<td>0</td>
<td>98.5</td>
</tr>
<tr>
<td>White blood cell decreased</td>
<td>20.0</td>
<td>44.6</td>
<td>27.7</td>
<td>0</td>
<td>92.3</td>
</tr>
<tr>
<td>Neutrophil count decreased</td>
<td>16.9</td>
<td>43.8</td>
<td>22.3</td>
<td>4.6</td>
<td>87.7(d)</td>
</tr>
<tr>
<td>Anemia</td>
<td>30.0</td>
<td>39.2</td>
<td>0</td>
<td>0</td>
<td>69.2</td>
</tr>
<tr>
<td>Lymphocyte count decreased</td>
<td>4.6</td>
<td>23.1</td>
<td>13.8</td>
<td>0.8</td>
<td>42.3</td>
</tr>
<tr>
<td>Platelet count decreased</td>
<td>28.9</td>
<td>10.2</td>
<td>2.3</td>
<td>0</td>
<td>41.4</td>
</tr>
</tbody>
</table>

\(a\) Abemaciclib is a competitive inhibitor of OCT2, MATE1, and MATE2-K, efflux transporters of creatinine; cystatin C calculated GFR was not raised.
\(b\) Lab abnormalities listed, except platelet count decreased (N = 128).
\(c\) Over baseline.
\(d\) A patient who received cytotoxic chemotherapy within the 30-day follow-up period.
Abemaciclib (LY2835219): MONARCH 2

A Randomized, Double-Blind, Placebo-Controlled, Phase 3 Study of Fulvestrant with or without LY2835219, a CDK4/6 Inhibitor, for Women with Hormone Receptor Positive, HER2 Negative Locally Advanced or Metastatic Breast Cancer

Women with HR+, HER2- Locally Advanced or Metastatic Breast Cancer (N=550)

Primary endpoint: Progression-Free Survival (PFS)

LY2835219 + Fulvestrant until PD

Placebo + Fulvestrant until PD

2:1

MARCH 20, 2017: Met its Primary Endpoint

NCT02107703
Evolution of ER+ Breast Cancer

- **Tamoxifen** (1977)
- **Astrazole** (1995)
- **Toremifene** (1997)
- **Letrozole** (1997)
- **Examestane** (1999)
- **Fulvestrant 250 mg** (2002)
- **Fulvestrant 500 mg** (2010)
- **Everolimus** (2012)
- **Palbociclib** (2015)
- **Toremifene 250 mg** (2002)
- **Fulvestrant 500 mg** (2010)

Modified from Chmowski epub 2012